以太坊讲解视频以太坊介绍视频
大家好,今天小编来为大家解答以太坊讲解视频这个问题,以太坊介绍视频很多人还不知道,现在让我们一起来看看吧!
本文目录
以太坊2.0未来的发展如何GHOST,DAG,SPECTRE,PHANTOM和CONFLUX技术原理有什么赚钱的路子如何通俗解释区块链以太坊2.0未来的发展如何以太坊2.0升级,最核心的是以太坊2.0分片和PoS共识机制。采用PoS共识机制是为了提高以太坊协议的能源效率以及增加以太坊区块链的安全性。以太坊2.0分片,使得以太链不再需要通过每个节点来处理链上的每笔交易。
在分片系统中每个节点只需处理约1%的交易或更少,从而极大地提高了区块链的效率。实现ETH2.0以后不仅网络性能得到大幅提升,投资者也可以减少重资产的投入(+slf0037)。共识协议Casper及分片技术落地,对网络的底层协议作出巨大的改变,还进一步推动了区块链扩容技术向前发展,不断达到商用的标准。截至2021年1月7日16时已经有超过230万个ETH被锁定在该网络中,占以太坊总供应量的2%。然而,这仍然只是更新的第一阶段。据官方消息,Uniswapv3已部署到以太坊主网。根据官方文章,Uniswapv3是该协议迄今为止功能最强大的版本,集中式流动性为流动性提供者提供了空前的资本效率,为交易者提供了更好的执行力,以及去中心化金融的核心基础设施。就以太坊路线图而言,V神表示,随着合并日期的临近,路线图的许多方面越来越变得切实可行,乐观估计今年年底可以完成升级,在合并后,执行链会在共识链内部运行,每个信标链区块会包括一个来自执行链的区块。他还表示,合并需要许多复杂技术,目的是让整个过程尽可能简单,对于用户、客户端、开发者、智能合约来说,合并会更加顺畅,用户无需过多担心。目前许多中心化交易所、去中心化交易所、去中心化质押协议和基础服务商都进入了以太坊2.0的Staking赛道。不难想象之后会有更多的服务商涌现,而以太坊2.0Staking板块也将会成为交易所和钱包的标配。那么ETH1.0的PoW链,究竟还能挖多久?目前并没有一个明确的答案。但可以确定的是,在以太坊由PoW彻底转变为PoS之前,以太坊基金会必须用足够长的时间来向大家证明PoS链是安全的。这样才能让所有开发者和用户放心的完成切换,从而使整个价值超过1000亿美金的生态体系真正的、完全的运行在信标链上。
没有人知道完成工程的推进,需要花多长时间,这是个很大的未知数,并且这些未知数可能是以太坊2.0转换的很大阻力。因此,我们乐观估计PoW链至少还可以持续挖两到三年。
链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。
GHOST,DAG,SPECTRE,PHANTOM和CONFLUX技术原理 DAG概念,当做继比特币,以太坊后新的一代区块链技术(区块链3.0),那么DAG区块链是什么?DAG的由来是什么?它的技术理念是怎么样的?运行在DAG区块链上的协议有哪些?
要想解释DAG,离不开YonatanSompolinsky和AvivZohar两位以色列人,他们是DAG区块链这一概念的提出者。在DAG之前,AvivZohar提出了一个GHOST协议(以太坊初期就采用了GHOST协议),该协议解决的是链分叉带来的安全性问题,而分叉的区块链在GHOST协议下数据结构就从一条链变成了一个树(Tree),而之后AvivZohar进一步提出了一个inclusive协议,在inclusive协议规则下,区块的结构就变成了有向无环图(DAG)。
接下来本文将:
1.介绍GHOST协议,DAG由来背后的设计原理
2.介绍三种针对DAG型区块链设计的协议,SPECTRE、PHANTOM和CONFLUX。
GHOST协议是为了解决分叉导致链安全性降低的一个协议。
下边将通过解释什么是分叉,为什么分叉会降低链的安全性,链上扩容为什么会导致更多分叉来详细介绍GHOST协议。
一笔比特币交易为什么要等6个区块的交易时长呢?
等待不是为了防范51%攻击的。落后6个区块,如果拥有超过51%的算力,只要足够长的时间,一定能够产生更长的链完成攻击。它是为了防止分叉带来的风险。
比特币在理想情况下,不同节点之间有相同的一条区块链,全部节点都是基于同一个区块进行挖矿,但当两个挖矿节点几乎同时挖到一个新的区块,当它们接收到对方产生的区块时,不同的节点将选择基于其中一个区块挖矿,分叉产生了。之后节点会根据哪条分叉更长,选择哪条是主链进行挖矿,而不是主链的分叉区块全部被抛弃。
比特币每天都会发生二分叉,但出现连续的六次分叉几乎不可能,于是要等待6个区块的确认时间。(这种分叉不是来自恶意攻击,是偶然性以及网络延迟导致的。
分叉将‘攻击不超过51%算力,比特币就是安全的’这一理论推翻。
在比特币中,当链有分叉时,将选择分叉最长的链作为主链,恶意攻击就是产生一条比主链更长的链代替主链。
下图中蓝色区块代表诚实区块,红色代表攻击区块。2号、3号蓝色区块产生分叉,此时攻击节点产生5个攻击区块(红色)就能产生一条更长的链完成攻击。虽然蓝色区块总数更多(有6个),但分叉的区块没有增加链的长度,这种情况下,红色攻击方在算力(假设每个区块代表算力相同)没有超过51%的情况下攻击成功。
比特币当前安全的原因在于10分钟的区块时间降低了分叉可能性,但其实际安全算力仍低于51%,也就是说,不需要51%的算力也能攻击成功。
采用大区块以及小的产出时间将导致链有很多分叉。
比特币当前处理交易量很低,改进这个缺陷一个可行方法就是增大区块的大小和减小区块的产出时间。大区块需要更多的网络传输时间、单位时间更多的区块数都会导致更多的分叉。
链上扩容的方案对比特币处理交易能力提升是巨大的,假如每个区块大小变为原来的八倍(8M),出块时间缩短为原来的五分之一(2分钟),理想情况下,比特币的处理交易量将变为原来的40倍,实际情况会产生分叉,交易量不会有这么高。
主链选择中,采用计算最大子树来代替比特币中的最长链规则。
比特币的最长链规则在有分叉情况下,将降低链的安全性,分叉越多,安全性越低。链上扩容将导致更多分叉,导致链不安全。
YonatanSompolinsky提出GHOST规则,当有分叉时,通过计算最大子树,也就是每条分叉拥有的所有区块数来决定哪条链是主链。图0中,链在区块0后分叉了,上边分叉总计有6个蓝色区块,下边分叉有5个红色区块,蓝色区块1是主链,所以红色攻击失败。
在有大量分叉的情况下,GHOST规则将链安全性直接提到了51%,分叉对采用GHOST协议的链安全性没有影响。
根据GHOST规则,上图中虽然诚实节点产生了12个区块,但加入主链的只有4个区块,大量区块被丢弃,假定比特币每个区块大小变为原来的八倍(8M),出块时间缩短为原来的十分之一(1分钟),分叉率为0.33(产生的区块加入主链的概率),比特币的处理交易能力将变为原来的26.6倍。
GHOST协议解决了链上扩容导致分叉带来的安全性问题。
区块的结构类型就从一条链变为树
在GHOST的提出后,YonatanSompolinsky提出一种新的设想,新产生的区块指向所有已知的分叉末端区块,即一个区块有多个父亲,此时区块链就从一条链变为多条分叉链共同组成的的结构,这样的链结构就被叫做DAG(有向无环图)。
YonatanSompolinsky进而提出了在DAG上运行的inclusive协议,原理如下:
遗憾的是,YonatanSompolinsky之后并没有详细介绍补充该协议,而是提出了一种新思路的DAG协议——SPECTRE。
看完上边内容之后,你会发现,最长链规则下,分叉的区块对比特币安全性和交易量没有任何贡献,白白的浪费了算力,而GHOST通过计算分叉区块个数来提升链的安全性,但分叉区块除了纳入区块计数外,区块内包含的交易信息却全部被丢弃。
这种新的区块结构带来了新的特性,当然,比特币的最长链规则也可以在DAG上实施,只不过安全性和处理交易能力不佳,而GHOST协议可以提高安全性和处理交易能力,为了最大化利用DAG区块链特性,社区提出了不同的协议,接下来介绍YonatanSompolinsky提出的SPECTRE协议,以及PHANTOM协议,以及国内某社区提出的CONFLUX协议。
丢弃主链概念,所有产生的区块共同构成账本,不丢弃任何一个区块
只要是产生的区块就不会被丢弃,所有的区块都是有效的,所有区块共同组成账本,这样进一步提高了区块链的处理交易能力,该设计的关键在于设计算法来保证区块链不会被恶意攻击成功。
SPECTRE协议较为复杂,下边将从其如何产生区块、如何处理冲突交易以及产生可信交易集三个方面进行描述。
SPECTRE协议中,当产生区块时,要指向之前所有分叉的末端区块。
下图中,左边为比特币产生区块时,当有分叉出现,新区块将选择基于其中一个产生新的区块,而SPECTRE中,将基于所有分叉末端区块产生新的区块。同时,当有新区块产生时,节点要立刻将新区块(包含基于哪些区块产生这一信息)发送给与自己相连接的节点。
仔细观察,GHOST协议中虽然有分叉,但每个区块都只基于前边某一个区块产生,而SPECTRE协议中要基于当前节点知道的所有末端区块产生下一个区块。
SPECTRE协议将矿工维持交易不冲突的要求剥除
比特币就像一本权威的账本,只要是里边记录的,就一定是真的(不考虑分叉和恶意攻击),而SPECTRE产生的DAG就像一本不权威账本,里边的交易信息可能冲突(上边图1中两个1区块中可能包含冲突交易信息)。
该协议下,挖矿节点只负责迅速挖区块(能够达到1秒一个区块),而对分叉中可能包含的冲突交易在挖矿阶段并不做任何处理,将记录交易速度最大化,让DAG这种区块链有着恐怖的处理交易能力。
是时候解决挖矿不解决的冲突交易问题了,SPECTRE的思路是设计一个计算投票的算法,让诚实区块会投票给诚实的区块,后边的诚实区块会给前边的堆叠算力,从而让恶意攻击失败,其安全算力也是51%。
拿双花举例,下图中,X和Y区块中包含着两条冲突交易会导致双花,此时DAG中的区块会对X和Y进行投票,决定哪一个交易有效。
投票规则如下,投X的标蓝,投Y的标红,X<Y代表X先于Y:
根据投票结果,X中的那条交易信息有效,Y中对应的那条交易信息无效。 YonatanSompolinsky也对不指向前边区块以及产生区块不发给邻居节点的恶意攻击有进行分析,在投票规则中,低于50%算力的攻击者会失败。
投票听起来像是一个主动地中心化行为,实际上不是,程序根据当前DAG区块所处的状态自发完成这一区块投票计算过程,就相当于,给定一个DAG数据,输入为两条冲突信息,运行该规则算法,将得出一对冲突交易的哪一个为有效。
SPECTRE可信交易集就相当于超过当前6个区块的比特币链里组成的交易集合。 区块链从数字加密货币的角度来说,就是一个账本,从账本上的交易信息中得出每个账户所拥有的货币,所以,得出确定的、不可能更改的交易信息就至关重要,SPECTRE可信交易集产生过程如下:
SPECTRE并不会对所有区块进行排序,所有区块没有一个完整的线形顺序,有的只是决定冲突信息先后的区块顺序对。
比特币中的高度代表的就是线形顺序,高度低的区块中交易信息先于高度高的区块里的信息,高度高的区块就不能包含和高度低的区块冲突的交易,而SPECTRE有大量的分叉,区块高度不能代表线形顺序,前边的区块交易信息不一定先于后边的分叉区块交易信息,交易信息的有效性要由投票算法来决定,区块投票算法很快,再加上它将所有分叉区块都包含进来,也就没有了比特币所面临的分叉风险(等待6个区块),交易确认时间可以达到10秒。
至此,和比特币相比,SPECTRE对应的DAG区块链有三个特点:
SPECTRE协议非常适合DAG型数字加密货币,但当它用于智能合约时,它的缺陷就出来了,智能合约需要一个严格的线性顺序,对此YonatanSompolinsky新设计了PHANTOM协议来对DAG区块形成一个线性顺序,下边将详细介绍PHANTOM协议。
SPECTRE和PHANTOM是两个完整的独立的协议,不是一个对另一个的补充。
PHANTOM的挖矿机制和SPECTRE一样,会产生同样类型的DAG,不同的是PHANTOM通过对区块连通度分析,判定区块诚实还是恶意,按照分类对区块排序,对DAG区块产生一个严格的线性顺序,通过线性顺序来判断冲突交易有效性。
DAG中,攻击者有两种攻击手段,一产生的区块不基于已知的末端区块,二不立即发布自己产生的区块,前者会让自己区块指向的区块变少,后者让其他节点产生的区块不会指向自己的区块,这两种情况都会导致这些恶意区块的与其它区块的连接度低。
诚实区块在考虑网络最大延迟下,经过一定时间一定会传遍整个网络,一定会被后边的区块所指向,诚实节点在产生新区块时也一定会指向自己所知道的末端区块。
通过对区块指出去的边和指向该区块的边进行分析,也就是区块的连通度,当考虑最大的网络延迟,连通度会有一个极限值K,低于该值的区块可以被认定为恶意区块,在排序中要处于劣势。
接下来,进行区块诚实和恶意判定,判定分两步,第一步最重要,实现复杂也耗费时间,主要为通过对区块连通度的判定,将强连通度的区块标为蓝色视为诚实区块,弱的标为红色视为恶意区块。
第二步先对蓝色区块集排序,拓扑排序,然后对红色区块集排序。红色区块的顺序要处于弱势,例如上图中C,它处于A和I之间,那么它的顺序会排在I的前一个区块,而D、H都会排在C前。注意通过考虑最大延迟时间设定连通度的值,几乎所有正常诚实节点产生的区块都会被标记为蓝色
至此,PHANTOM协议实现了对DAG的线性排序,通过线性顺序就可以提取无冲突交易集,进而提取可信交易集,虽然耗时较长,满足智能合约的要求。
YonatanSompolinsky在PHANTOM协议论文结尾,提出一种将PHANTOM+SPECTRE结合起来的可能协议,没有详细展开介绍。下图是几种协议的对比:
至此,介绍了YonatanSompolinsky一开始从分叉导致不安全提出的GHOST,到后来将DAG引入区块链,设计了SPECTRE协议,以及为智能合约考虑的PHANTOM协议。接下来,介绍国内某社区提出的CONFLUX协议。
GHOST有主链但丢弃分叉区块;SPECTRE没有主链,包含所有分叉,但没有线性顺序;PHANTOM没有主链,包含分叉且有线性顺序,而CONFLUX即有主链,又是DAG,利用主链让DAG产生线性排序,下面将从挖矿机制和区块排序两方面来说明CONFLUX协议。
CONFLUX协议定义了根源边和参考边。新区块是基于前一个主链区块产生的,新区块用根源边(实线)指向前一区块,用参考边(虚线)指向分叉的其他区块末端,如下图最后一个新区块实线指向H,虚线指向分叉末端区块K。根源边用于代表区块基于哪个区块产生,给哪个区块堆叠算力,参考边用于表示分叉的其它区块产生在该区块之前。
挖矿过程如下:
根源边只能有一条,参考边可多条(视情况而定)
以主链区块为分割点,将DAG分段,段间段内设计简单排序算法
CONFLUX协议下产生的区块链如上(图2),接下来对其进行线性排序,排序算法如下:
通过上述排序,DAG有了一个线性顺序,上图DAG区块顺序为Genesis,A,B,C,D,F,E,G,J,I,H,andK。接下来对该线性顺序的区块里的交易信息进行交易排序,单一区块里可能包含的冲突交易将直接按照该区块内交易信息排列先后顺序决定。
至此,CONFLUX对DAG所有区块产生一个线性顺序,进而可以对区块内交易信息排序,产生无冲突交易集,超过一定时间的无冲突交易组成可信交易集。主链只是排序的标尺,作为分割时段的标准,CONFLUX包含所有分叉区块。
GHOST论文
Inclusive论文
SPECTRE论文
PHANTOM论文
CONFLUX论文
DAGlabs相关讲解视频合集
有什么赚钱的路子这样的路子太多了,只是大部分人都是说说,根本不会去做。当然,好路子一般也不太可能是免费的。对于好路子,一方面是舍得化钱买路子,另一方面是敢于去做,一定去做,靠空想,永远是不可能赚钱的,特别想赚大钱。一个好路子想出来也不容易,免费给一个不认识的人那一定是不可能的。
如何通俗解释区块链区块链就是一种去中心化的分布式账本数据库,这种分布式账本的好处就是,买家和卖家可直接交易,不需要任何中介。人人都有备份,哪怕你这份丢失了,也不受影响。
假如你们家里有个账本,让你来记账。在以前,就是爸爸妈妈把工资交给你,让你记到账本上。中间万一你贪吃,想买点好吃的,可能账本上的记录会少十几块,别人也不知道。
用区块链解决问题的方法:如果用全家总动员的方式记账,上述说的问题就不会有了,因为你在记账,你爸爸也在记账,你妈妈也在记账,他们都能看到总账,你不能改,爸爸妈妈也不能改,这样想买烟抽的爸爸和想贪吃的你都没办法啦。
扩展资料:
区块链应用领域
1、金融领域
区块链在国际汇兑、信用证、股权登记和证券交易所等金融领域有着潜在的巨大应用价值。将区块链技术应用在金融行业中,能够省去第三方中介环节,实现点对点的直接对接,从而在大大降低成本的同时,快速完成交易支付。
2、物联网和物流领域
区块链在物联网和物流领域也可以天然结合。通过区块链可以降低物流成本,追溯物品的生产和运送过程,并且提高供应链管理的效率。该领域被认为是区块链一个很有前景的应用方向。
3、公益领域
区块链上存储的数据,高可靠且不可篡改,天然适合用在社会公益场景。公益流程中的相关信息,如捐赠项目、募集明细、资金流向、受助人反馈等,均可以存放于区块链上,并且有条件地进行透明公开公示,方便社会监督。
4、保险领域
在保险理赔方面,保险机构负责资金归集、投资、理赔,往往管理和运营成本较高。通过智能合约的应用,既无需投保人申请,也无需保险公司批准,只要触发理赔条件,实现保单自动理赔。
参考资料来源:百度百科-区块链
如果你还想了解更多这方面的信息,记得收藏关注本站。